USB硬件编码格式NRZI
我们知道USB3.0以前采用的是两根数据线D+和D-所对应的数据传输,采用的是数据编码方式是NRZI(Non-Return-to-Zero Inverted),而USB3.0以后采用的是8/10bit编码。
USB使用NRZI编码方式:当数据为0时,电平翻转;数据为1时,电平不翻转。为了防止出现过长时间电平不变化现象,在发送数据时采用位填充处理。具体过程如下:当遇见连续6个高电平时,就强制插入一个0。经过位填充后的数据由串行接口引擎(SIE)将数据串行化和NRZI编码后,发送到USB的差分数据线上。接收端完成的过程和发送端刚好相反。
同步时钟编码
USB 的数据是串行发送的,就像 UART、I2C、SPI 等等,连续的01 信号只通过一根数据线发送给接受者。
但是因为发送者和接收者运行的频率不一样,信号的同步就是个问题,比如,接受者接收到了一个持续一段时间的低电平,由于没有时钟采用,所以无法得知这究竟是代表了多少个低电平0。
一个解决办法,就是在传输数据信号的同时,附加一个时钟信号,用来同步两端的传输,接受者在时钟信号的辅助下对数据信号采样,就可以正确解析出发送的数据了,比如 I2C 就是这样做的,SDA 来传输数据,SCL 来传输同步时钟:
虽然这样解决了问题,但是却需要附加一根时钟信号线来传输时钟。有没有不需要附加的时钟信号,也能保持两端的同步呢?
有的,这就是 RZ 编码(Return-to-zero Code),也叫做归零编码。
NRZ编码(Non-return-to-zero Code)
RZ 编码(Return-to-zero Code),也叫做归零编码。在 RZ 编码中,正电平代表逻辑 1,负电平代表逻辑 0,并且,每传输完一位数据,信号返回到零电平,也就是说,信号线上会出现 3 种电平:正电平、负电平、零电平:
从图上就可以看出来,因为每位传输之后都要归零,所以接受者只要在信号归零后采样即可,这样就不在需要单独的时钟信号。实际上, RZ 编码就是相当于把时钟信号用归零编码在了数据之内。这样的信号也叫做自同步(self-clocking)信号。
这样虽然省了时钟数据线,但是还是有缺点的,因为在 RZ 编码中,大部分的数据带宽,都用来传输“归零”而浪费掉了。
NRZ编码(Non-Return-to-Zero Inverted Code)
我们去掉这个归零步骤,NRZ 编码(Non-return-to-zero Code)就出现了,和 RZ 的区别就是 NRZ 是不需要归零的:
这样,浪费的带宽又回来了,不过又丧失宝贵的自同步特性了,貌似我们又回到了原点,其实这个问题也是可以解决的,不过待会儿再讲,先看看什么是 NRZI:
NRZI 编码(Non-Return-to-Zero Inverted Code)
NRZI 编码(Non-Return-to-Zero Inverted Code)和 NRZ 的区别就是 NRZI 用信号的翻转代表一个逻辑,信号保持不变代表另外一个逻辑。
USB 传输的编码就是 NRZI 格式,在 USB 中,电平翻转代表逻辑 0,电平不变代表逻辑1:
翻转的信号本身可以作为一种通知机制,而且可以看到,即使把 NRZI 的波形完全翻转,所代表的数据序列还是一样的,对于像 USB 这种通过差分线来传输的信号尤其方便~
现在再回到那个同步问题:
的确,NRZ 和 NRZI 都没有自同步特性,但是可以用一些特殊的技巧解决。
比如,先发送一个同步头,内容是 0101010 的方波,让接受者通过这个同步头计算出发送者的频率,然后再用这个频率来采样之后的数据信号,就可以了。
USB使用NRZI编码同步原理
在 USB 中,每个 USB 数据包,最开始都有个同步域(SYNC),这个域固定为 0000 0001,这个域通过 NRZI 编码之后,就是一串方波(复习下前面:NRZI 遇 0 翻转遇 1 不变),接受者可以用这个 SYNC 域来同步之后的数据信号。
此外,因为在 USB 的 NRZI 编码下,逻辑 0 会造成电平翻转,所以接受者在接受数据的同时,根据接收到的翻转信号不断调整同步频率,保证数据传输正确。
但是,这样还是会有一个问题,就是虽然接受者可以主动和发送者的频率匹配,但是两者之间总会有误差。
假如数据信号是 1000 个逻辑 1,经过 USB 的 NRZI 编码之后,就是很长一段没有变化的电平,在这种情况下,即使接受者的频率和发送者相差千分之一,就会造成把数据采样成 1001 个或者 999 个 1了。
USB中用Bit-Stuffing来同步时钟信号
USB 对这个问题的解决办法,就是强制插 0,也就是传说中的 bit-stuffing,如果要传输的数据中有 7 个连续的 1,发送前就会在第 6 个 1 后面强制插入一个 0,让发送的信号强制出现翻转,从而强制接受者进行频率调整。
接受者只要删除 6 个连续 1 之后的 0,就可以恢复原始的数据了。
很多人会说如果传输了 11111101,会不会接受者把0勿删,答案是不会的,接收端收到6个1后,紧接着肯定会收到0(如果第7位为1则插入0,如果传输的第7位为0则接受者接收到的也为0)。这个0是否删除需要查看0的下一位,下一位如果1则发送端是真的发送了连续的7个1,之前收到的0的确是发送端插入进入的,需要删除;如果下一位是0,则接受端只发送了6个1,之前收到的0为接收端发送的数据,不能删除。
Bit-Stuffing实例
在使用力科的抓包调试工具时,有一个很好的功能是可以显示波形。如对于如下的的OUT令牌包,其因为PID和地址出现连续的1,故插入了Bit-Stuffing。
不显示Bit-Stuffing
显示BIT-stuffing